Zobrazit na úvodní stránce článků

Na začátek článku
Titulka > Modul články > Gymnaziální vzdělávání > Těžiště České republiky

Ikona prakticky

Těžiště České republiky

Ikona inspirace
Autor: Jaroslav Reichl
Anotace: Článek popisuje netradiční úlohu zaměřenou na problematiku určování těžiště soustavy hmotných bodů. Úloha podporuje interdisciplinární výuku propojující vzdělávací obsahy vyučovacích předmětů fyzika, matematika, zeměpis a ICT.
Podpora výuky jazyka:
Klíčové kompetence:
  1. Gymnázium » Kompetence komunikativní » efektivně využívá moderní informační technologie
  2. Gymnázium » Kompetence k učení » kriticky přistupuje ke zdrojům informací, informace tvořivě zpracovává a využívá při svém studiu a praxi
  3. Gymnázium » Kompetence k řešení problémů » vytváří hypotézy, navrhuje postupné kroky, zvažuje využití různých postupů při řešení problému nebo ověřování hypotézy;
Očekávaný výstup:
  1. gymnaziální vzdělávání » Člověk a příroda » Fyzika » Pohyb těles a jejich vzájemné působení » určí v konkrétních situacích síly a jejich momenty působící na těleso a určí výslednici sil
Mezioborové přesahy a vazby:
  1. Gymnaziální vzdělávání -> Informatika a informační a komunikační technologie
  2. Gymnaziální vzdělávání -> Geografie
  3. Gymnaziální vzdělávání -> Matematika a její aplikace
Průřezová témata:

Nejsou přiřazena žádná průřezová témata.

Organizace řízení učební činnosti: Skupinová, Individuální
Organizace prostorová: Školní třída, Specializovaná učebna
Klíčová slova: těžiště tělesa, tabulkový procesor, ICT, mapa ČR, momentová věta

Cíl výuky:

Cílem úlohy je rozvíjet dovednosti žáků, které se týkají určování polohy těžiště soustavy několika hmotných bodů. Tato dovednost se pak dále prohloubí a zobecňuje při práci na počítači s tabulkovým procesorem. Úloha rozvíjí a posiluje mezipředmětové vztahy, propojuje několik předmětů – fyziku (fyzikální pojem těžiště tuhého tělesa), matematiku (geometrický význam těžiště, výpočet jeho polohy), zeměpis (znalost územního dělení České republiky) a ICT (práce s tabulkovým procesorem).

Text článku:

Zaměření úlohy

Úloha je určena pro žáky prvních ročníků středních škol, je vhodné ji zařadit po probrání pojmu těžiště tuhého tělesa ve fyzice. S určitou nápovědou nebo zjednodušením je úloha vhodná i pro žáky základních škol.

Zadání úlohy

Určete polohu těžiště České republiky za předpokladu, že republiku považujete za homogenní, na všech místech stejně silnou desku a že zohledníte počet obyvatel v jednotlivých okresech České republiky.

Najděte vhodnou mapu České republiky, vytiskněte a vystřihněte ji a pokuste se určit její těžiště. Odpovídá jeho poloha nalezené poloze? Diskutujte.

Promyslete, jak by bylo možné experimentálně (alespoň přibližně) ověřit teoretické řešení zadané úlohy (tj. nalezení polohy těžiště České republiky se započtením počtu obyvatel jednotlivých okresů).

Realizace výuky

Před vyřešením zadané úlohy je vhodné vyřešit postupně dvě pomocné úlohy. Pomůže to hlubšímu pochopení problému a slouží jako příprava k řešení problémové úlohy.

1) Určete polohu těžiště soustavy dvou kruhových desek různých hmotností m1 = 0,5 kg a m2 = 1,5 kg. Desky leží na úsečce a podle obrázku 1 platí: x1 = 2 dm a x2 = 9 dm.  

 Obr. 1

2) Určete polohu těžiště soustavy tří kruhových desek o hmotnostech m1 = 1,5 kg, m2 = 0,5 kg a m3 = 1 kg, které se nacházejí v rovině. Při označení podle obrázku 2 platí: x1 = 1 dm, x2 = 9 dm, x3 = 5 dm, y1 = 0 dm, y2 = 1 dm a y3 = 6 dm.

 Obr. 2 

A) Učitel žákům zadá nejdříve první pomocnou úlohu. Je vhodné použít pracovní list v příloze tohoto článku (teziste_prac_list_1.docx). 

Úlohu budeme řešit v rovině, protože tloušťku kruhové desky lze ve srovnání s průměrem desky zanedbat. Desky mají obecně různé hmotnosti m1 a m2, proto na ně působí obecně různé tíhové síly a, které jsou zobrazené na obr. 3. 

 Obr. 3

Polohu těžiště soustavy zadaných kruhových desek na ose x označíme xT. Tuto neznámou vypočteme na základě platnosti momentové věty; vzhledem k počátku osy x má momentová věta (viz např. [1]) tvar:

                                                                                                                                                                 

Uvědomíme-li si, že obě síly vystupující ve vztahu (1) jsou síly tíhové, můžeme psát:

 

 

kde g je velikost tíhového zrychlení. Vyjádřením neznámé xT z rovnice (1) a dosazením ze vztahů (2) získáme pro xT vztah: 

.

 

 

Na obr. 4 je zobrazeno řešení úlohy pro konkrétní zadání: m1 = 0,5 kg, m2 = 1,5 kg, x1 = 2 dm a x2 = 9 dm. Na základě vztahu (3) získáme polohu těžiště xT = 7,25 dm.

 

 Obr. 4 

Poloha těžiště soustavy dvou těles závisí na vzájemné hmotnosti těchto těles. V případě, že hmotnosti budou stejné, bude těžiště této soustavy těles ležet uprostřed mezi oběma tělesy.

Poloha těžiště tedy závisí na rozložení látky (hmotnosti) v dané soustavě těles, přičemž těžiště leží blíže k místu, kde je soustředěna větší hmotnost. Pokud žáci ve vztahu (3) budou vidět jakýsi „průměr“, je to v pořádku. Jedná se vlastně o vážený průměr poloh jednotlivých částí tělesa (resp. soustavy těles), přičemž vahou v tomto případě jsou hmotnosti jednotlivých částí tělesa (resp. soustavy těles). Tato myšlenka je velmi důležitá a bude dále využita. 

Polohu těžiště v tělese v závislosti na hmotnostech jeho částí lze velmi snadno demonstrovat experimentálně metodou, která je popsána v [2]. K jejímu provedení budeme potřebovat špejli a modelínu – nejlépe pro každého žáka (nebo dvojici žáků) ve třídě. Špejle bude představovat osu x z výše popsané úlohy a z modelíny vytvarujeme kuličky různých hmotností. Snadno pak určíme experimentálně polohu těžiště vytvořeného tělesa. Po odměření veličin m1, m2, x1 a x2 lze pomocí vztahu (3) ověřit shodu experimentu s teorií. Žáci přitom mohou vytvářet různé „činky“ (různá délka, různé hmotnosti kuliček) a pro všechny ověřit platnost odvozeného vztahu. 

Časová náročnost úlohy: cca 30 minut. 

B) Učitel žákům zadá druhou pomocnou úlohu. Je vhodné použít pracovní list v příloze tohoto článku (teziste_prac_list_2.docx). 

Řešení druhé úlohy bude popsáno stručněji, protože můžeme využít již vyřešené první úlohy. Stejně tak při řešení mohou žáci (resp. učitelé) postupovat tak, že se odvolají na řešení předchozí úlohy. Druhá úloha, jejíž zadání je zobrazeno na obr. 2, je vlastně dvourozměrnou analogií předchozí úlohy. Proto bude nutné úvahy, kterými jsme vyřešili první úlohu, zopakovat při řešení druhé úlohy dvakrát – jednou z hlediska osy x, podruhé z hlediska osy y

Na obr. 5 jsou vyznačeny síly, které působí na jednotlivé části zadané soustavy těles. Jedná se o tíhové síly definované analogickými vztahy, jako jsou vztahy (2). Momentová věta vzhledem k počátku soustavy souřadnic bude mít nyní tvar: 

 

kde xT je x-ová souřadnice hledaného těžiště. Pro tuto souřadnici dostáváme vztah:

                                                                                               

 

 

Pro zadání m1 = 1,5 kg, m2 = 0,5 kg, m3 = 1 kg, x1 = 1 dm, x2 = 9 dm a x3 = 5 dm dostáváme na základě vztahu (5) x-ovou souřadnici polohy těžiště: xT = 3,67 dm. Víme tedy, že těžiště leží na přímce, která je rovnoběžná s osou y a prochází bodem o souřadnicích [3,67; 0] (viz obr. 6).

 

 Obr. 5 

 

Obr. 6 

Analogicky můžeme postupovat při hledání y-ové souřadnice yT těžiště zadané soustavy těles. Síly působící na jednotlivá tělesa soustavy jsou zobrazeny na obr. 7. I v tomto případě se jedná o tíhové síly jednotlivých částí soustavy tělesa, ač jsou zakresleny ve vodorovném směru. Tento obrázek je důležitý pro správnou formulaci momentové věty, pomocí níž určíme souřadnici yT. Momentová věta vzhledem k počátku soustavy souřadnic má tvar: 

 

Pro y-ovou souřadnici těžiště pak dostáváme: 

                                                                    

Při stejných hmotnostech jednotlivých částí soustavy a pro y1 = 0 dm, y2 = 1 dm a y3 = 6 dm získáme na základě vztahu (7) y-ovou souřadnici polohy těžiště: yT = 2,17 dm. Těžiště proto leží také na přímce, která je rovnoběžná s osou x a prochází bodem o souřadnicích [0; 2,17] (viz obr. 8). 

 Obr. 7 

  

 

Obr. 8 

Těžiště hledané soustavy těles proto leží (pro dané konkrétní zadání) v bodě o souřadnicích T = [3,67; 2,17] (viz obr. 9). 

Pokud budou mít všechna tělesa této soustavy stejnou hmotnost, bude těžiště ležet v geometrickém těžišti trojúhelníka s vrcholy ve středech zadaných těles. 

Hledání polohy těžiště lze i v tomto případě experimentálně ověřit. Jako tělesa soustavy použijeme opět modelínu, z níž budeme vytvářet kuličky o různé hmotnosti, a jako podložku tužší kousek plastu (např. dno kelímků od salátů), karton, … Abychom nemuseli uvažovat vlastní tíhu podložky, musí mít kuličky výrazně větší hmotnost, než je hmotnost použité podložky. 

Žáky lze nechat diskutovat nad problémovou otázkou: „Jak by se změnily vztahy (5) a (7), kdybychom hmotnost podložky uvažovali?“ 

Časová náročnost: 15 minut s využitím řešení předchozí úlohy. 

Obr. 9

C) Nyní je možné přistoupit k řešení úlohy zaměřené na nalezení polohy těžiště České republiky se zohledněním počtu obyvatel v jejích jednotlivých okresech. Podle [3] je v České republice ke dni 31. 12. 2014 celkem 77 okresů; ve stejném zdroji jsou uvedeny i počty obyvatel v jednotlivých okresech. Tato data lze exportovat do souboru v databázovém formátu (např. ve formátu XLS). V souboru teziste_data.xls jsou připravena data (včetně zeměpisných poloh okresních měst) k dalšímu použití. Tento soubor je součástí přílohy článku. 

Pro výpočet polohy těžiště podle zadání úlohy zobecníme vztahy (5) a (7); vahami v tomto případě budou počty obyvatel v jednotlivých okresech, souřadnicemi budou zeměpisná šířka a zeměpisná délka. Zeměpisnou šířku j těžiště proto můžeme vypočítat pomocí vztahu: 

 

kde pi je počet obyvatel v i-tém okrese a ji je zeměpisná šířka i-tého okresního města. 

Analogicky můžeme určit zeměpisnou délku l těžiště: 

 

li je přitom zeměpisná délka i-tého okresního města. 

Pokud přeneseme tyto vztahy do tabulkového procesoru, můžeme relativně snadno určit zeměpisné souřadnice těžiště České republiky s přihlédnutím k počtu obyvatel v jednotlivých okresech: j = 49,82371° a l = 15,56252°. 

Správné řešení je uvedeno v souboru teziste_reseni.xlsx, který je součástí přílohy článku. 

Obr. 10

 

 Obr. 11 

S využitím map dostupných na internetu (např. [4]) lze pomocí vypočtených souřadnic najít geografické místo, ve kterém leží takto vypočítané těžiště České republiky. Toto místo se nachází přibližně 1 km východním směrem od obce Heřmanice nedaleko Golčova Jeníkova (viz obr. 10). Poloha těžiště v rámci celé České republiky je patrná z obr. 11. 

K experimentálnímu nalezení polohy těžiště České republiky budeme potřebovat její tištěnou mapu. Mapy republiky lze nalézt na internetu – např. mapa [5] obsahuje i dělení na okresy. Tento obrázek je natolik kvalitní, že jej lze vytisknout na tužší papír formátu A4 (nebo větší) a experimentálně nalézt polohu těžiště. 

Abychom mohli experimentálně určit polohu těžiště České republiky se započtením počtu obyvatel v jednotlivých okresech, bylo by nutné vytvořit model představující rozložení obyvatel. Počty obyvatel jednotlivých okresů (viz [3]) bychom si museli předem upravit – např. vydělit 10 000, čímž bychom získali počty od 4 (po zaokrouhlení na celá čísla) do 126. Tyto počty již by bylo možné zrealizovat malými tělesy, která bychom položili na mapu do příslušného okresu nebo je zavěsili pod příslušný okres. 

Popsané výpočty (dělení 10 000, rozsah počtu nutných předmětů, jejich celkový počet) lze přitom velmi rychle provést rovněž v tabulkovém procesoru s daty uvedenými v souboru v příloze.

Reflexe:

Popsanou aktivitu lze rozdělit do dvou částí. Pomocné úlohy lze vyřešit se žáky společně na hodině fyziky, resp. je nechat řešit postupně žáky samostatně a kontrolovat dílčí mezikroky. Hlavní úlohu – nalezení těžiště České republiky v závislosti na počtu obyvatel jednotlivých okresů – lze nechat žáky řešit samostatně doma s tím, že jim pošleme (resp. na vhodné úložiště nahrajeme – v závislosti na zvyklostech školy) připravená data. Žáci v současné době již mají doma počítače, kde mohou úlohu zpracovat. Během výuky fyziky většinou není možné jít s žáky do učebny výpočetní techniky. Ve škole na další hodině pak výsledky úlohy porovnáme a úlohu uzavřeme.

Další možností, jak úlohu řešit, je domluvit se s vyučujícím ICT v dané třídě, zda není úloha vhodným námětem do výuky tohoto předmětu (pokud se probírá v hodině tabulkový procesor, …). Žáci tak mohou úlohu řešit v rámci předmětu ICT. Učitel na ní může vysvětlit podstatné pojmy (relativní odkazy, absolutní odkazy, vzhled tabulek, …) a ohodnotit ji z hlediska práce s tabulkovým procesorem. Učitel fyziky ji pak ohodnotí z hlediska správného výsledku a jeho fyzikální interpretace.

Aktivity tohoto typu jsou u žáků poměrně populární. Výše popsaná úloha včetně její metodiky byla zařazena i na semináři Elixír do škol. Učitelé aktivně navrhovali způsoby řešení a hodnotili ji kladně jako zajímavou. 

Zařazení do seriálu: Tento článek je zařazen do seriálu ICT a fyzika.

Ostatní články seriálu:

Citace a použitá literatura:
[1] - REICHL, Jaroslav. Encyklopedie fyziky. [cit. 2015-12-18]. Dostupný z WWW: [http://fyzika.jreichl.com/main.article/view/84].  
[2] - REICHL, Jaroslav. Určování polohy těžiště tělesa . [cit. 2015-12-18]. Dostupný z WWW: [http://clanky.rvp.cz/clanek/o/g/2271/URCOVANI-POLO...].  
[3] - Počet obyvatel v obcích - k 1.1.2015. [cit. 2015-12-18]. Dostupný z WWW: [https://www.czso.cz/csu/czso/pocet-obyvatel-v-obci...].  
[4] - Mapy.cz . [cit. 2015-12-20]. Dostupný z WWW: [http://mapy.cz].  
[5] - Mapa České republiky . [cit. 2015-12-20]. Dostupný z WWW: [http://portal.uur.cz/images/nuts/NUTS-2-2012.jpg].  
Přílohy:
Anotované odkazy:
Příspěvek nemá přiřazeny žádné anotované odkazy.
Přiřazené DUM:
Příspěvek nemá přiřazeny žádné DUM.
Přiřazené aktivity:
Příspěvek nemá přiřazeny žádné aktivity.
 
INFO
Publikován: 05. 01. 2016
Zobrazeno: 1346krát
reklama
Hodnocení příspěvku
Hodnocení týmu RVP:
Hodnocení článku : 0

Hodnocení uživatelů:
Hodnocení článku : 4
Hodnotit články mohou pouze registrovaní uživatelé.

zatím nikdo Hodnocení článku : 5
1 uživatel Hodnocení článku : 4
zatím nikdo Hodnocení článku : 3
zatím nikdo Hodnocení článku : 2
zatím nikdo Hodnocení článku : 1
Jak citovat tento materiál
REICHL, Jaroslav. Těžiště České republiky. Metodický portál: Články [online]. 05. 01. 2016, [cit. 2016-09-29]. Dostupný z WWW: <http://clanky.rvp.cz/clanek/c/G/20571/TEZISTE-CESKE-REPUBLIKY.html>. ISSN 1802-4785.
Doporučte materiál
Licence Licence Creative Commons

Všechny články jsou publikovány pod licencí Creative Commons.

reklama

Komentáře
Příspěvek nebyl zatím komentován.